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This paper is concerned with deducing the most important features of the steady 
separated flow past a circular cylinder in the limit of vanishing viscosity. First of 
all, it is shown that the experimental results reported in an earlier article cannot 
be reconciled with the notion that, as the Reynolds number Re is increased, the 
flow becomes inviscid everywhere and that viscous effects remain confined 
within infinitesimally thin shear layers. In  contrast, the limiting solution is 
visualized as exhibiting three essential features: a viscous, closed ‘wake bubble ’ 
of finite width but with a length increasing linearly with Re in which inertial and 
viscous effects are everywhere of equal order of magnitude; an outer inviscid 
flow; and, separating the two regions, a diffuse viscous layer covering large 
sections of the external field. Further properties of this asymptotic solution 
include: a finite form drag, a negative rear pressure coefficient at the rear 
stagnation point of the cylinder, and a Nusselt number for heat transfer which 
becomes independent of Re along the non-wetted portion of the cylinder surface. 
This model is shown to be consistent with all the experimental data presently 
available, including some new heat transfer results that are presentedin this paper. 

An approximate technique is also proposed which takes into account the 
asymptotic character of the flow in the vicinity of the cylinder and which 
predicts the pressure distribution around the cylinder in good agreement with 
the experiments. 

1. Introduction 
One of the basic unsolved problems of viscous flow theory is that of under- 

standing the nature of the steady separated flow past bluff objects at high 
Reynolds numbers and of determining the limiting solution of the steady-state 
Navier-Stokes equations for vanishing viscosity. This is an important problem 
because, if this limiting solution were available, it  could yield the pressure 
distribution around the object, thereby enabling one to calculate the rates of 
transport of vorticity, heat and mass for steady flows with finite (but small) 
viscosity with a standard boundary-layer analysis. Also, the successful solution 
of this problem would yield valuable information concerning the extent to which 
viscosity determines the structure of steady high-Reynolds-number flows. 

t Present address : Fairchild Semiconductor Research Laboratory, Palo Alto, California. 
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To obtain the limiting solution theoretically is an extremely difficult task. 
As was already explained in an earlier article (Grove et al. 1964), all previous 
attempts seem to have been based on the simplifying assumption that the 
limiting solution of the Navier-Stokes equations for vanishing viscosity can be 
obtained by solving the simple limit of these equations, i.e. the Euler or inviscid 
equations. This assumption cannot be justified rigorously. Yet, it appears 
reasonable to suppose that, as the Reynolds number is increased, the viscous 
contributions to the Navier-Stokes equations should become negligible in com- 
parison to inertial and pressure effects everywhere, except within thin regions 
where the velocity gradients become infinitely large. According to this point of 
view then, the flow field, with the exception of these singular surfaces, should be 
describable in terms of an inviscid solution provided that the viscosity is made 
sufficiently small. 

During the past sixty years, such an approach has been applied with tre- 
mendous success to the solution of a great variety of problems associated with 
flows past slender bodies. In  contrast, its application to flows past bluff objects, 
where separation takes place, has resulted in almost complete failure. To quote 
Proudman (1960): '. . .it is a sobering thought that, despite the fifty or so years 
that the techniques of boundary-layer theory have been at our disposal, so little 
progress has been made with the problem (of separated flows) that even such 
a bulk characterististic as the dependence of the drag coefficient on (large) 
Reynolds number is still a matter of pure conjecture.' 

Offhand, one might think that the basic difference between the two cases is 
the following. When separation does not take place, velocity discontinuities will 
occur only at the body surface, and the Euler equations will have a unique 
solution. If, however, separation does take place, there will be additional surfaces 
of velocity discontinuity whose shape and position are unknown. Consequently, 
the Euler equations will have an infinite number of solutions, such as the sym- 
metrical potential flow model, the Kirchhoff free-streamline solution, the pro- 
posal of Batchelor (1956) and Foppl's vortex model (Grove et al. 1964), and it is 
impossible to tell apriori which one of the inviscid solutions, if any, will correctly 
describe the asymptotic nature of the steady flow a t  high Reynolds numbers.? 

In order then to provide a much needed physical basis for a theoretical attack 
on this problem, an experimental investigation of the steady separated flow past 
a circular cylinder at increasingly large Reynolds numbers was undertaken, the 
principal features of which have already been described in detail by Grove et al. 
(1964). It is worthwhile to recall here the most important results of these 
experiments. (i) The pressure coefficient (or non-dimensional pressure) f at the 

t Actually, as was pointed out to the authors by Dr G. K. Batchelor, Foppl's model 
cannot be classified as being an acceptable solution of the Navier-Stokes equations for 
arbitrarily small but non-vanishing viscosity, owing to the fact that the vorticity which is 
assumed to be concentrated at the two vortex centres cannot be prevented from diffusing 
out into the main part of the closed wake, unless of course v 2 0. 

3 The pressure coefficient is defined as po  = (p~-p~o. ' t8 t ) /&pUz where p i  is the actual 
pressure at the cylinder surface at  an angle B from the front stagnation point, p is the fluid 
density, and p& and U are, respectively, the static pressure and velocity of the undis- 
turbed flow. Primed symbols in this paper usually refer to physical, dimensional quantities. 



Xteady separated $ow at large Reynolds numbers 739 

rear stagnation point of the cylinder, pI8,,, reaches the value of approximately 
- 0-45 at Re = 25 and remains unchanged as the Reynolds number is increased.i 
(ii) Within the range of the experiments, the length of the circulating wake bubble 
is proportional to the Reynolds number, while, in contrast, the width of the 
wake-bubble reaches a finite limit which is only slightly larger than the cylinder 
diameter. (iii) The ratio of the maximum back-flow velocity within the wake 
bubble to the velocity of the undisturbed flow reaches a finite limit which lies 
approximately between - 0.3 and - 0.5. 

It is now the purpose of this paper to draw some conclusions regarding the 
nature of steady separated flows at  large Reynolds numbers based chiefly on the 
new experimental results given by Grove et al. (1964) and briefly summarized 
above. 

2. A theoretical model for the limiting solution 
(a )  T h e j o w  structure inside the wake bubble 

We begin our theoretical analysis by focusing our attention on the experimental 
results pertaining to the pressure coefficient a t  the rear stagnation point of the 
cylinder. These measurements have already been presented in figure 6 of Grove 
et al. (1964) but, because of their significance, they are reproduced in figure 1 
together with a few recent data. In  contrast with figure 6 of Grove et al., all the 
points shown in figure 1 refer to steady wakes. 

This graph can now be interpreted in two ways. One could take the point of 
view of course that, since the maximum Reynolds number Re attained experi- 
mentally was only about 180, it is not possible to infer from figure 1 the asymptotic 
limit of the rear pressure coefficient as Re -+to, and that the plateau of the curve 
of pressure coefficient against Re in the range 25 < Re < 180 may be caused by 
some sort of transitory flow r6gime. A much more constructive attitude, how- 
ever, would be to assume that the rear pressure coefficient would remain equal 
to - 0.45 even for Re > 180, and to construct a theoretical model for the steady 
flow at infinite Re which would be consistent with this experimental result. This 
approach seems all the more logical, since a careful examination of all the 
experimental data presented in figure 1 shows that, within the experiments1 
accuracy, the rear pressure coefficient is clearly independent of Re for 

25 < Re < 180, 

and that no systematic trend can be discerned among the various points away 
from the horizontal line. 

We shall take it for granted then that the asymptotic solution must be 
characterized by a rear pressure coefficient equal to -0.45. This, as we shall 
show presently, leads to a number of significant conclusions. 

The first important result is that the pressure drag for the cylinder must 
remain finite even for infinite Reynolds numbers. This is based on the fact that 
the pressure coefficient at the front stagnation point must obviously be equal to 
unity for large Re, and that, as stated by Grove et a&., the pressure coefficient is 

t The Reynolds number is Re = U d / v ,  where U is the velocity of the undisturbed 
stream, d is the cylinder diameter and v is the kinematic viscosity. 

47-2 
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approximately equal to p,, throughout the rear or 'non-wetted' part of the 
perimeter. Thus, since p,,, equals - 0.45 at high Re, only an extremely unrealistic 
pressure profile on the front half of the cylinder, a profile that would depart 
widely from those measured experimentally, could produce a zero pressure drag 
(Grove 1963). 
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FIGURE 1. The effect of Reynolds number on t,he rear stagnation pressure (steady wake). 
0 ,  no splitter plate; 6 , 4  in. splitter plate; 9 , 2  in. splitter plate; 0 ,  Homann; A ,  Thom. 

An immediate consequence of the finite drag conclusion is of course that the 
asymptotic flow at high Reynolds numbers cannot consist of a truly finite wake 
with its dimensions independent of Re, since, under these conditions, a zero 
pressure drag would result in accordance with d'Alembert's principle. 

The wake bubble must then continue to grow, but, since its widt.h was experi- 
mentally found to become independent of Re (see Grove et a,!.), we need only 
concern ourselves with the increase in its length. Let us consider the typical 
wake bubble depicted in figure 2. We observe first of all that a closed streamline 
which passes near the non-wetted side of the cylinder must also pass through a 
region lying close to the wake stagnation point. There, however, the pressure 
coefficient is most certainly either close to zero, or even positive on account of the 
relatively stagnant nature of the flow, whereas, as mentioned earlier, the 
pressure coefficient along the cylinder surface is equal to - 0.45. One is forced to 
admit, therefore, that, along any given streamline connecting the rear portion 
of the wake bubble with the region close to the cylinder, there must exist a 
significant pressure drop which remains finite for all Re. Clearly, this pressure 
drop can be due only to viscous effects. 
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FIGURE 2. A typical wake bubble. 

Thus, we have reached the seemingly paradoxical conclusion that, even when 
Re + a, the flow inside the wake bubble cannot be treated as inviscid and that 
viscous effects must be retained in order to account for the observed pressure 
drop. This result will now be given a surprisingly simple explanation. 

We recall that, in terms of non-dimensional variables, the Navier-Stokes 
equations for the two-dimensional steady case are 

and 

t o  which must be added the continuity equation 

au av 
ax ay 
-+- = 0. 

(The velocities have been reduced by U ,  the distances by the cylinder diameter d ,  
the pressure as before, and Re = Ud/v.  The undisturbed flow is in the positive 
x-direction. ) 

Now, it has already been reported by Grove et al. that, along the major portion 
of the returning stagnation streamline, the flow velocity is O(1) and that the 
width of the wake bubble is also O( 1) and independent of the Reynolds number. 
Consequently, if in the above system of equations the viscous and the inertia 
terms are to remain of the same order of magnitude even as Re -+ co, we must 
require that both aplaxand aupx be O( l/Re). This in turn suggests the substitution 

in terms of which the equations of motion become, as Re + co, 

au ,au i a p  a2u 

aa ay 2aa ay2’ 
u - + v -  = ---+- 

and 

where 

An immediate consequence of this analysis is that the wake-bubble length xL 
should be a linear function of Re and that the shape of the wake bubble in the 
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(a, 9)-plane should be independent of the Reynolds number. Both these theor- 
etical predictions are in agreement with the experimental observations reported 
by Grove et al. 

It is also of some interest to point out that, since the return (negative) velocity 
has its maximum value along the returning streamline, (a2u/ay2),_, > 0 for 
0 < 2 < gL, where & = 0 denotes the rear stagnation point of the cylinder and 2, 
the position of the wake stagnation point. Therefore, by integrating equation (4 a) 
along y = 0, we arrive a t  

which is, once more, in qualitative agreement with the experimental measure- 
ments. 

(b )  The state of motion near the non-wetted perimeter of the cylinder 

Although equations (4) and ( 5 )  may very well describe the state of motion 
throughout the major portion of the wake bubble, it  becomes apparent upon 
further examination that they cannot hold near the cylinder surface. The reason 
for this can be traced to the omission of the term a2ula22 from (4a) and the 
resulting reduction of the order of that equation. Consequently, if one were to 
attempt a solution of this system in the (2, y)-plane (in which, incidentally, the 
cylinder appears as a vertical flat plate when Re + co) one would be forced to 
abandon one of the boundary conditions, 8 = 0 at 2 = 0, and require only that 
u = 0 at 2 = 0. It is clear then that, for the region near the cylinder, a new trans- 
formation is needed which would eliminate once again the Reynolds number from 
equations (1)  and (2) without, however, reducing their order. 

Such a transformation is given by 

i i=uRe,  E=vRe and p=pRe2,  (7) 

in terms of which equations (1)  and (2) become, respectively, 

and 
au av -+- = 0. 
ax ay 

Of course, before concluding that ii and V are independent of Re and are 
functions of position alone, we must be able to show that the Reynolds number, 
which has been eliminated from equations (l), does not enter into the solution 
via the boundary conditions. These boundary conditions must therefore be 
examined in some detail. 

First of all, we require that Ti and @ vanish along the non-wetted portion of the 
cylinder surface and that, because of symmetry, ariilay and 3 be zero along the 
stagnation streamline. In  addition, we require that, in accordance with the usual 
procedure for singular perturbation expansions, the ‘inner ’ solution Z(x, y) 
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match throughout an overlap region with the ‘ outer’ solution u(2, y )  satisfying 
equations (4) and (5 ) .  This matching requirement becomes 

limii(x, y )  = lim Reu(2, y ) ,  
X+= 2+0 

(9) 

if the Reynolds number Re is allowed to take on arbitrarily large values. Let us 
consider the right-hand side of equation (9). We have remarked.already that if 
one sets u = 0 at 2 = 0 one is not at liberty to specify, simultaneously, O(0, y) .  
In  general then the latter will be O( 1) and therefore, from the continuity equation, 
(au/a2) will also be O( 1) as 2 + 0. Thus, 

u + 2 f ( y )  as 2 + 0 ,  

where f( y )  is a function of y only, and, in view of equation (9) 

i i + x f ( y )  as x-tao. 

Now, all the boundary conditions on Ti and V, shown above, have clearly been 
independent of the Reynolds number. The remaining condition, however, which 
requires that ii and V match along the region adjacent to the wake-bubble 
boundary with the appropriate velocity components of the external flow, cannot 
be given a simple form, owing to obvious analytical difficulties and to the com- 
plicated nature of the boundary-layer separating the main flow from the relatively 
stagnant ‘inner’ region of the wake bubble. Thus, we have not been able to 
determine whether or not the Reynolds number enters explicitly into this last 
matching condition. Nevertheless, although our theoretical arguments are 
admittedly incomplete, it seems reasonable to conclude tentatively that ;ii and V 
are indeed independent of Re, and therefore O( 1) throughout the ‘inner’ region. 
As a consequence, the actual velocity components u and v should be O(l/Re) 
within that portion of the wake bubble extending a distance O(1) downstream 
from the non-wetted perimeter. 

It was thought desirable to put this interesting conclusion to an experimental 
test. This was accomplished by means of a heat-transfer experiment, which was 
based on the following considerations. One recalls that, in forced convection, 
the temperature distribution around a heated object is governed by the energy 

V2T (in dimensionless form), 
aT 8T u-++v- = ~ 

ax ay RePr 

equation 

where T is a dimensionless temperature and Pr = c,p/k is the familiar Prandtl 
number. Now, it is a well known fact that the thermal region is generally con- 
fined close to the heated surface if the Prandtl number of the fluid is large enough, 
in which case the temperature profile near the non-wetted part of the cylinder 
surface should be governed by the velocity distribution within the ‘inner’ region 
of the wake bubble, where, according to our earlier arguments, both u and v 
should be O( 1/Re) when Re 1. Thus, if we set ii = u Re and V = v Re, where 
U and 3 are O( l), we obtain in place of equation (10) 
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according to which the temperature distribution in the ‘inner’ region of the 
wake bubble should be independent of Re at high Reynolds numbers. In  parti- 
cular, since the thickness of the thermal layer becomes O(Pr-4) and therefore 
vanishingly small as Pr -+ co, one can introduce into equation (10a) the standard 
thermal-boundary-layer approximations (Lighthill 1950; Morgan & Warner 
1956), from which it follows that 

Nu/Pr* = P(0) as Re -+a, (11) 

where Nu is the local Nusselt number and P(0) is an arbitrary function of the 
polar angle 8. 

Thus, this analysis has led to the surprising conclusion that, along the non- 
wetted part of the cylinder surface, the local Nusselt number should become 
independent of Re in the limit Re -+ 00, which is in contrast to the result for the 
wetted portion of the perimeter, where Nu/Prf should be O(Re4) in accordance 
with the well-known laminar boundary-layer theory. 

The experiments which were performed to test this conclusion involved the 
measurement of the surface temperature distribution along a uniformly heated 
cylinder 0-82in. in diameter, and were carried out in the oil tunnel already 
described by Grove et al. (The Prandtl number of the oil was in excess of 1000 thus 
ensuring the applicability of the thermal-boundary-layer approximation.) We 
shall now present very briefly the most important experimental findings, leaving 
the pertinent details of the experimental set-up to Appendix 1 at the end of this 
paper. 
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In order to test the performance of the equipment, the experiments pertaining 
to  the front stagnation point of the cylinder were first analysed, since these can 
be compared quantitatively with the predictions of the laminar-boundary-layer 
theory. These results are seen plotted in figure 3, from which it is apparent that 
Nu/Prt becomes proportional to Re4 for Re > 40. Although this asymptotic 
behaviour is of course in agreement with the theory, one observes a noticeable 
discrepancy in the proportionality constant between the theoyetical value of 
1.32, obtained from Lighthill’s (1950) solution, and the experimental value of 
1.50. The major part of this discrepancy is due undoubtedly to the presence of a 
wall effect, which, as shown by Grove et al., is significant even for a blockage ratio 
as low as 0.1. This was further demonstrated with experiments using an even 
larger blockage ratio of 0.18, where the proportionality constant was found to 
equal 1.7. 

I I I , I I , I I , , I I , I I I  

0 

FIGURE 4. The variation of Nu/Pr* along the cylinder surface (steady wake). 
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Unfortunately, it  was not found possible to repeat our heat-transfer experi- 
ments with a lower blockage ratio, owing to the great difficulties involved in 
fabricating a small diameter test piece with thin enough walls (i.e. less than 
0.003 in. thick) to eliminate conduction losses along the perimeter. It should be 
kept in mind, therefore, that our experimental heat-transfer results, although 
qualitatively correct and thus adequate for the purposes of this study, do contain 
an error due to the wall effect of the order of 10-20 %. 

Local values of Nu/Pr& are seen plotted in figure 4 for various values of 0 and 
the Reynolds number. As expected, Nu/Pr* increases monotonically with Re 
along the wetted perimeter, becoming eventually proportional to Re*, whereas, 
in accordance with the theoretical arguments presented above, it becomes 
gradually independent of Re along the non-wetted perimeter as the Reynolds 
number is increased. Another point of interest is that the local values of Nu/Pr$ 
were found to be practically independent of position throughout the portion of 
the cylinder surface in contact with the wake bubble. 

25 
g4 

3 

2 i . 

'0 20 40 60 80 100 120 140 160 180 200 220 240 
Re 

FIGURE 5. The effect of Reynolds number of Nu/Pr* at the rear 
stagnation point (steady wake). 

Perhaps, though, the most important results are those depicted in figure 5 
showing the,variation with the Reynolds number of Nu/Pr* at the rear stagnation 
point. Indeed, the general behaviour of the experimental data is in striking 
agreement with the qualitative predictions of the theoretical analysis presented 
above, and clearly shows that, as long as the wake bubble remains steady, the 
local Nusselt number along the non-wetted perimeter approaches a finite limit 
as the Reynolds number is increased. That the transfer of heat in the wake bubble 
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must occur by convection, as our theory would demand, rather than by pure 
conduction which would also result in the Nusselt number being independent of 
Re, can be inferred from the magnitude of the experimentally measured Nu. Thus, 
as seen from figure 5, the asymptotic value of Nu is around 70, the Prandtl 
number being approximately 1200, which is about one or two orders of magnitude 
larger than the expected Nusselt number for pure conduction. 

A graph very similar to figure 5 was also obtained with the P75in. diameter 
heated cylinder, giving a blockage ratio of 0.18, the only difference being that 
the asymptotic value of Nu/Pr% was 13 rather than 6.5, and that the Reynolds 
number at which the asymptotic limit seemed to have been reached was 180 
rather than 90. Thus it appears that, as was the case with the front part of the 
cylinder, the net affect of the proximity of the walls is to introduce an inaccuracy 
into the functional relation between Nu and Re along the non-wetted perimeter, 
without, however, affecting qualitatively its principal characteristic features. 

Finally, it was thought desirable to repeat a few of these experiments, again 
with a blockage ratio of 0-08, but with the splitter plate absent. This arrangement 
gave an unsteady wake for Re > 65 and produced results at the rear stagnation 
point which were quantitatively similar to those of figure 5. This is not too sur- 
prising, however, since it was observed during the experiments that the region 
close to the non-wetted perimeter appeared to remain quite steady, even when 
the major portion of the wake bubble was either unsteady or in a state of disinte- 
gration. Nevertheless, these two sets of results did differ in one important 
respect, since in every run involving unsteady wakes a definite upward trend in 
the curve of Nu/Pr* against Re was observed even along its flatter portions, 
whereas, in the case of steady wakes, such an upward trend was totally absent 
when Re > 90. 

It is realized, of course, that these heat-transfer results can only serve to test 
the consistency of the theoretical analysis presented so far, and that they cannot 
take the place of any direct experimental determination of the velocity com- 
ponents u and v within the ‘inner ’ portion of the wake bubble. The data pre- 
sented in figure 5 are valuable, however, since they provide further experimental 
evidence in support of our theoretical approach. 

(c )  A possible inconsistency of the model 

Up to this point, we have focused our attention on the state of motion inside the 
wake bubble, and have developed a model for the flow there which is consistent 
with all the experimental measurements presently available. Yet, as pointed out 
to the authors by Dr G. K. Batchelor, a look a t  the flow outside the wake bubble 
gives rise to a serious question regarding the overall consistency of our theoretical 
treatment, which we shall now discuss. 

A logical consequence of the arguments leading from equations (1) to equa- 
tions (4) is that the pressure gradient along the major portion of the wake-bubble 
boundary should not be less than O(l/Re), for otherwise, owing to the presence 
of viscous effects, i t  would not be possible to maintain a significant reverse flow 
within the wake bubble over longitudinal distances O(Re). On the other hand, 
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a straightforward potential-flow analysis over the long but slender body repre- 
senting the cylinder plus the wake bubble easily leads to the result that the 
pressure recovery should be almost complete at a distance O(1) behind the 
cylinder, and that if, as we have claimed all along, the wake bubble has a width 
O( 1) but a length O(Re), the pressure coefficient should be O( l/Re) at a distance 
O(1) downstream from the solid object. This in turn would mean. that ap/ax 
would be O( 1) along the ‘inner’ region of the wake bubble, i.e. the region lying 
within a distance O( 1) from the non-wetted perimeter, and at most O( l/Re2) 
along the remaining portion of the closed wake. Both these results are in obvious 
contradiction with some of the basic aspects of our theoretical model. 

An even more disturbing feature of this inviscid analysis, however, is that it 
leads to the conclusion that, since the pressure is supposed to recover a few 
diameters downstream from the cylinder, the pressure coefficient at  the rear 
stagnation point cannot stay negative as Re -+ 00 owing to the absence of any 
viscous effects along the returning streamline over distances O( 1). This, of course, 
is at variance with the experimental data shown in figure 1. 

Thus, a truly inviscid analysis over the composite body, i.e. the cylinder plus 
the wake bubble, leads to conclusions that are hopelessly inconsistent not only 
with many of the basic features of our theoretical model, but, more important 
than that, with the experimental measurements pertaining to the pressure 
coefficient along the non-wetted perimeter of the cylinder. 

To be sure, one may attempt to resolve the difficulty just described by arguing 
that the inconsistency may not be a real one after all, since it may merely arise 
out of the erroneous comparison of an inviscid analysis, which applies only at 
truly infinite Re, with experimental data that exist only up to Re N 200. As 
mentioned earlier, however, considering all the evidence presently available, it 
appears much more reasonable to assume that the data, especially those in the 
range 100 < Re < 200, are indeed indicative of the state of motion at infinite Re, 
in which case one is faced with the task of showing why the classical potential 
flow treatment outlined above may not, in fact, be applicable to this particular 
system. 

We recall at this point that the standard inviscid flow analysis has invariably 
been applied to objects which are fixed in size. For such systems, the analysis 
can be justified on the grounds that, at high Reynolds numbers Re, = UZ/v, the 
thickness of the viscous layers is everywhere, i.e. both adjacent to the body as 
well as throughout the wake, 0(1/2/Re,), thus becoming infinitesimally small as 
Re -+ 00. The situation is altered in a very fundamental way, however, if, as in 
our case, the length of the object is allowed to vary in direct proportion to Re 
(based on the cylinder diameter), for, under these conditions, the thickness of the 
shear layer that separates the wake-bubble boundary from the external flow will 
become at  least O( 1) near the tip of the wake bubble irrespective of the value of 
Re. Thus, the potential flow analysis should be performed, if at all, around an 
‘equivalent’ body that would include not only the cylinder plus the wake bubble 
but also all the regions of non-zero vorticity. In  view of the fact, however, that 
these shear regions cannot be made arbitrarily thin by increasing the Reynolds 
number, as would be the cake with a body of fixed size, one has very little assur- 
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ance that the relative dimensions of the ‘equivalent’ body would be even 
qualitatively similar to those of the wake bubble. In particular, since the width 
of the outer (open) wake must increase parabolically with the longitudinal 
distance far downstream from the object, one has every reason for believing that 
the ‘equivalent’ body would be not only much longer (perhaps even open down- 
stream) but also substantially wider than the composite body shown in figure 2. 

The arguments presented above do not imply, of course, that  the main 
features of the inviscid analysis over a slender body, resulting in the prediction 
of a pressure recovery within a distance O( 1) from the cylinder, are necessarily 
incorrect if applied to the present case. Instead, these arguments have focused 
attention on the very great complexity of the external flow problem, and have 
served to point out the tremendous difficulty involved in obtaining even quali- 
tative deductions about the pressure distribution along the wake bubble on the 
basis of a truly inviscid model, owing to the fact that even the relative dimensions 
of the ‘equivalent ’ body cannot be specified with confidence. 

Thus, although we have not succeeded in resolving, once and for all, the 
possible inconsistency in our theoretical model, we have presented definite 
reasons why the inviscid flow analysis, which leads to this inconsistency, may 
in itself be incorrect. This matter is, however, far from settled yet and clearly 
requires considerably more attention. 

3. Some approximate results 
(a )  An approximate calculation of the pressure profile 

From a practical point of view, one of the most valuable results of any theoretical 
analysis of steady separated flows at high Re is the prediction of the pressure 
distribution around the solid object. Yet, this is also one of the most difficult 
problems to solve exactly since, as was explained in the last section, a truly 
inviscid analysis of the flow external to the cylinder and the wake bubble cannot 
be reconciled with the available experimental data. Thus, a more sophisticated 
approach appears necessary, an approach that would take into account the 
presence of non-zero vorticity throughout large portions of the external field. 
This, however, remains to be accomplished. 

In  the absence of an exact method, one is forced then to resort to approximate 
techniques, all of which, so far, have been based on an inviscid analysis of the 
flow system. At first glance, this may seem strange indeed in view of all that was 
said earlier on this subject. On the other hand, if it  is well understood that the 
purpose of such an analysis is to yield approximate values for the pressure profile 
on the solid object, and very little else, then such a procedure is certainly 
permissible even though it may be incompatible with some of the main charac- 
teristic features of the flow. A case in point is the method first proposed by 
Roshko (1954), who performed an inviscid analysis for a composite body, 
consisting of the solid object together with a semi-infinite stagnant wake of 
finite width. In  Roshko’s analysis the (negative) wake pressure was left un- 
specified. Yet, even so, it  was still not found possible to satisfy all the boundary 
conditions of the problem without introducing into the model a distinct in- 
consistency in the form of two semi-infinite solid plates parallel to the main 
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stream, the purpose of which was to force the stagnant wake to remain finite 
in width. 

In  regard to this problem, the use of such artifices is of course fairly standard 
by now, and the various additional models which have been proposed such as 
Riabouchinsky’s (1920), Woods’ (1955), Wu’s (1962), to name but a few, differ 
mainly in the type of inconsistency which they introduce into an otherwise 
straightforward inviscid analysis. Of these models, Woods’ ( 1955) and Roshko’s 
(1954) (the latter refined by Wu 1962) appear to be the more successful ones, 
having given pressure profiles in good agreement with experimental measure- 
ments in the case of systems with unsteady wakes. When applied to steady 
separated flows, however, both these models are generally unsatisfactory, even 
when, as in Roshko’s (1954) case, the wake pressure is set equal to that measured 
experimentally along the non-wetted perimeter of the object. It was thought 
desirable, therefore, to develop a new method for attacking this problem, which 
would yield a pressure distribution around a cylinder in agreement with the one 
measured experimentally at Re = 177 and shown in figure 4 of Grove et al. (1  964). 

The method which we shall propose consists simply of an inviscid analysis 
around a suitable composite body, as in figure 2, together with the assumption 
of zero pressure drop in the vertical direction throughout the wake bubble. The 
calculations can be performed most easily by means of Riegels’ (1948) approxi- 
mate technique,? according to which, if the body contour is expressed as Y ( X ) ,  
where X is the axial distance from the front stagnation point of the cylinder 
(both distances being in terms of the cylinder radius) 

1 L Y’(s) 
U ( X )  = [1+ { Y‘(X))”-J [ 1 +; P I o  CS ds] , 

in which u ( X )  denotes the tangential velocity along the body contour, L is the 
length of the body, the prime indicates differentiation and P the principal value 
of the integral. Then, because of Bernouilli’s equation, the pressure distribution is 

p ( X )  = 1 - - U 2 ( X ) ,  

where p is as defined earlier. 
Clearly, there are two rather obvious requirements for the success of the 

proposed approach. First of all, since the function Y(x)  is assumed known in 
equation ( la) ,  one should be able to estimate a priori the general shape of the 
body contour. Fortunately, this can be accomplished without much difficulty in 
genera1 due to the considerable information presently available concerning wake- 
bubble shapes. In  addition, the calculated pressure profiles on the cylinder 
surface should not only agree with the experimental measurements, but should 
also be relatively insensitive to the shape of the assumed body contour. 

As described in Appendix 2, a two parameter family of contours was chosen for 
detailed study. One of these contours is shown in figure 6 together with the 
experimentally observed wake-bubble boundary, while the pressure distribution 
around the cylinder, calculated on the basis of this contour, is shown in figure 7 
together with three sets of experimental data from Grove et al. (1964). Also shown 

7 For a description of this method see also Riegels (1961, p. 76), and Thwaites (1960). 
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,-Body contour (n = 1, Y = 45’) 

Experimental wake-bubble 
boundary, Re =- 200 
(from photographs) 

Y 

FIUURE 6. Comparison of the body contour with the wake-bubble boundary. 

A I I I I I I I I I 

k. .n. 
/ \  

e 
FIQURE 7. Comparison of experimental and calculated pressure distributions. Experi- 
mental measurements: 0 ,  Re = 40; A ,  Re = 129; m, Re = 177. -, present model; 
_ _ _  , symmetrical-potential-flow model; - * -, Foppl’s vortex model, k = 2.6. 

in figure 7 are the pressure profiles from two other inviscid models: the con- 
Ijinuous potential flow model, and Foppl’s vortex model with its adjustable 
parameter k set equal to 2.5 (Shair 1963). Clearly, the agreement between the 
calculations based on the present model and the experimental results is quite 
satisfactory. Moreover, as shown in Appendix 2, the calculated pressure profiles 
are indeed insensitive to the assumed shape of the body contour, so that the 
proposed method appears to be not only exceedingly simple to use but also, from 
the practical point of view, quite valuable. 
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Finally, we wish to emphasize once more that, in common with all existing 
inviscid analyses, the method just described contains certain basic inconsistencies 
with respect to the experimental observations. For one thing, if one sets Y ’ ( X )  = 0 
for X > O(1) in equation (la),  one obtains a pressure recovery along the wake- 
bubble boundary at a distance O(1) from the centre of the cylinder, which is 
clearly incompatible with the notion of a stagnant ‘inner ’ wake relative to the 
external stream. Thus, it  is important to realize that this method represents 
nothing more than an empirical, but apparently successful, technique for calcu- 
lating approximately the pressure distribution around solid objects in steady 
separated flows. 

( b )  The location of the point of detachment 
As mentioned earlier, the scheme which was proposed in the preceding section 
for determining the pressure profile on a bluff object requires that the approxi- 
mate shape of the wake bubble be known a priori. In turn, one of the most 
important factors that determines this shape is the location of the point of 
detachment, that is, the point at which the outer flow detaches itself from the 
surface of the body. Thus, it  would be helpful for our scheme if this point could be 
located theoretically starting from basic principles. 

Squire (1934) appears to have been the first to propose that the point of 
detachment should be identical to the point of separation of the boundary layer, 
which occurs by definition a t  the point of zero wall shear stress. Since the latter 
can be calculated readily via a standard laminar-boundary-layer analysis using 
the pressure profile that is impressed on the boundary layer by the external flow, 
one can readily visualize the following iterative procedure. A likely separation 
point is first selected, following which the pressure profile is determined by means 
of a, suitable inviscid technique. In  turn, this is followed by a boundary-layer 
calculation, resulting in a new separation point, and so on. This scheme forms the 
basis of Woods’ model (see Woods 1961, p. 428) and has also been tried many 
times before. 

Yet, although i t  is generally assumed that the points of detachment and 
boundary-layer separation do coincide, or very nearly so, no convincing proof 
for this assumption appears to have been advanced so far. It is of interest, 
therefore, to report that, when boundary-layer calculations were performed using 
the experimentally measured pressure profile at Re = 177 together with Stratford’s 
approximate technique as refined by Curl (1960), the shear stress at the wall was 
found to be positive everywhere along the wetted portion of the perimeter. 
It is realized of course that this result may not be very meaningful since boundary- 
layer separation is so dependent on the slope of the pressure profile, which, owing 
to experimental inaccuracies of our pressure measurements, could only be 
obtained approximately. Nevertheless, this result is reported here in the hope 
that it may lead to are-examinationof the important phenomenon of ‘separation’, 
and of the exact relationship, if any, between the points of boundary-layer 
separation and detachment of the external flow from the solid surface of a bluff 
body. 
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(c) Some estimates regarding the wake-bubble length 
An interesting way of considering the wake bubble can be developed on the basis 
of the fact that it  is in static equilibrium, so that the sum of the forces acting 
on i t  in any direction must be zero. As indicated in figure 8, however, the forces 
acting on the wake bubble are of two types: viscous and pressure forces. Therefore, 

IU p’n . e, ds’ + Ib p’n . ex ds’ + FL = 0,  (13) 

where a denotes the portion of the wake-bubble boundary in contact with the 
cylinder, and b denotes the rest of its boundary; p’ is the physical pressure, n the 
inner unit normal, and ex the unit vector in the positive x direction. FL is the 
integral of the viscous forces acting in the positive x direction. 

Main flow 
___) 

FIGURE 8. The forces acting on the wake bubble. 

Equation (13) can be rewritten in the non-dimensional form: 

fu pn.e,ds+ p,n.e,ds+- FL = 0. 
S b  tpU% 

Now, according to the experimental observations, the pressure coefficient at the 
rear of the cylinder is approximately -0.45 at large Reynolds numbers, from 
which it follows that the value of the first integral, - A ,  will also be approximately 
- 0.45. On the other hand, the contribution of the secondintegral will be relatively 
minor, since n .ex N 0 everywhere along b except near the tip of the wake bubble 
where p N 0. Consequently, 

F;/+pUzd = A g 0.45. (15) 

Next, since the streamline separating the wake bubble from the main flow is 
essentially parallel to the x-axis over most if its length, we can set 

where u‘, x’, y‘ are the physical quantities, y’* denotes the location of the wake- 
bubble boundary, and x ’ ~  denotes the length of the wake bubble. As described 
earlier, however, one of the features of the asymptotic flow is the existence of a 
viscous shear layer separating the relatively stagnant wake bubble from the 
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outer flow. Therefore, if we assume for simplicity that the shear layer remains 
thin along the whole of the wake-bubble boundary, we can determine FL approxi- 
mately by means of a standard boundary-layer analysis with xk as the charac- 
teristic length. It follows that 

FL 2 cpu (UXi/V)*, (17) 

where C is a constant of proportionality, so that, in view of equation (15), 

6 a =  - ( 5 A)2Re. 

Using an entirely different approach then, we have again established, as in 9 2, 
that the wake length is proportional to the Reynolds number, but with the added 
advantage that equation (18) allows us to arrive a t  a rough estimate for the 
constant of proportionality. Thus, by setting C E 0.8,. the value obtained by 
Potter (1957) for the boundary-layer flow of an unbounded fluid stream over 
another fluid region at rest, and A N 0.45, one obtains 

(q = O(l0-1). 

The experimentally observed values are 0.025 for d/h = 0.2 and 0.04 for 
d / h  = 0.1, (see Grove et al. 1964), while Taneda's (1956) measurements indicate 
a value of 0.067 for d / h  < 0.03. The theoretical estimate is therefore in good 
qualitative agreement with the experimental results. 

This work was supported in part by a grant from the Petroleum Research 
Fund administered by the American Chemical Society, and by a Texaco Corpora- 
tion fellowship which was awarded to D. D. Snowden. The authors are grateful 
to these donors for their financial support, and to Dr G. K. Batchelor for his 
constructive criticism of an earlier version of this paper. 

Appendix 1 
(a) Experimental equipment and procedure 

911 of the heat-transfer experiments were conducted in a tunnel (described in 
detail by Shah, Petersen & Acrivos 1962) in which a Newtonian lubricating oil 
with a viscosity of approximately 1 poise was recirculated past a horizontal 
circular cylinder, which was heated at a constant flux and placed in the test 
section with its axis normal to the direction of the main flow.? 

The cylinder was constructed of thin walled nichrome tubing with a uniform 
wall thickness of 0.010in. and an outside diameter of 0.82 in. High current from 
a regulated a.c. power source was supplied to the cylinder by means of heavy 
brass rings shrink-fitted onto its ends, and generated a constant and uniform 
heat flux in the thin cylinder wall. The circumferential surface-temperature 
distribution at the middle of the cylinder was measured by means of seven 
copper-constantan thermocouples, located 30" apart, which were positioned in 

t Details concerning the method used to obtain velocities in the tunnel test section and 
a discussion of the effect of confining walls on the velocity profiles and the pressure are 
given by Grove (1963). 
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grooves in a cylindrical Lucite core. This core, when fitted inside the cylinder, was 
surrounded by an air film which served to insulate thermally the inner cylinder 
surface. Figure 9 (plate 1) illustrates the cylinder and core assembly. A vacuum- 
tube voltmeter was used to measure the voltage drop between the two brass rings 
on the cylinder, and, together with the known resistance and cylinder surface 
area, led to an easy calculation of the heat flux. 

( b )  Temperature dependent viscosity 

A problem which generally arises in processing experimental heat-transfer data 
is that the fluid properties are temperature dependent within the thermal 
boundary layer. Fortunately, however, with the oil used in our experiments, only 
the variation of the viscosity with temperature had to be taken into account. 

First of all, it  has been shown (Acrivos 1960) that, for high-Prandtl-number 
fluids, the Reynolds number upon which the heat transfer depends should be 
based on the bulk fluid viscosity. In  addition, for the case of forced-convection 
heat transfer at high Prandtl numbers from an isothermal surface to fluids with 
temperature-dependent viscosity, one can show (Acrivos 1960) that the local 
Nusselt number is given by 

where P(z) represents the dimensionless velocity gradient at the wall, Pr is based 
on the viscosity at the temperature of the heated surface, and (dO/dq),~,, is to be 
obtained from the solution of the energy equation 

with the usual boundary conditions, 8(0) = 1 and $(a) = 0, p being the dimen- 
sional viscosity divided by its value a t  the surface where 8 = 1.  

Now, when the appropriate expression for the viscosity of our oil as a function 
of the temperature was inserted into equation (20), the solution was found to be 
very nearly the same as that for the constant property case. In  particular, one 
can show that in our case 

with b defined as b = 1 -pi/,&, where pi and p; are the dimensional viscosities 
evaluated at the temperature of the heated surface and the bulk fluid, respectively. 
Of course, with b = 0, equation (19) reduces to the constant property solution 
first developed by Lighthill (1950). 

Thus, we see that experimental values of Nu/Pri may be computed by basing 
Pr on the surface viscosity, provided they are multiplied by a suitable correction 
factor C 1 --bI'(#)/12[I'(+)]2, which, for the conditions of our experiments, 
was always within the range of 0.96 to 1.00. 

48-2 
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( c )  InJuence of the splitter plate 
Since the presence of a splitter plate in the wake bubble is required in order to 
maintain a steady separated flow at high Reynolds numbers,t we felt it desirable 
to check experimentally the influence, if any, of the plate position on the local 
Nusselt number at the rear of the heated cylinder. Figure 10 shows the variation 
with cld of the limiting value of Nu/Pr) at the rear stagnation point of the cylinder. 
( c  is the distance from the centre of the cylinder to the front edge of the splitter 
plate, and d is the cylinder diameter.) The most important conclusion which one 

*-Re 150 
*-Re 140 

* -  Re I30 

a * A a  .“ f / 

Re 90 

FIGURE 10. The effect of the splitter-plate position on the limiting value of Nu/Pr* at the 
rear stagnation point. e, 4 in. splitter plate; A, 2 in. splitter plate. 

can draw from figure 10 is that if the splitter plate is positioned ‘far enough’ 
(cld > 2.6) back from the cylinder, its position has no influence on the local 
Nusselt number. However, at positions nearer to the cylinder than this ‘critical ’ 
location, both the limiting value of Nu/Prs and the Reynolds number at which it 
is reached are increased. (This Reynolds number is shown adjacent to each point 
in figure 10.) Consequently, all of the experiments reported earlier in this paper 
were conducted with the plate positioned at a c/d greater than this ‘critical ’ value. 

Previous’studies, reported by Grove et al. (1964), have shown that the size of 
the splitter plate used to stabilize the wake bubble has no discernible influence 
on the value of the pressure coefficient at the rear stagnation point of the cylinder, 
and does not affect the linear relationship between the wake-bubble length and 

i Details concerning the use of a splitter plate to stabilize the wake bubble at high 
Reynolds numbers and on its mounting in the tunnel test section are given in Grove et ul. 
(1964). 
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the Reynolds number. It is therefore not surprising that no influence of the 
splitter-plate size on the limiting value of Nu/Pr* at the rear stagnation point of 
the cylinder was observed with the plate positioned at c/d > 2.6 (see figure 10). 

( d )  Influence of natural convection 

An analysis of the variation with Re of local values of Nu/Pr* at the rear stagna- 
tion point of the cylinder showed that, at high Reynolds numbers, the limiting 
value obtained for Nu/Pr* was essentially independent of the heat flux that was 
chosen for the experiment. However, a slight increase in Nu/Pr* with flux could 
be detected a t  lower Reynolds numbers. One may conclude that this influence is 
probably due to natural convection, since experiments conducted with no flow 
past the heated cylinder yielded values of the local Nusselt number at the rear 
stagnation point of the cylinder of approximately 14, or Nu/Pr* = 1.3 (Pr = 1200). 
In  contrast, the data at the front stagnation point of the cylinder showed no such 
influence of the heat flux. 

Appendix 2. The approximate pressure calculations 
The method, described in Q 3, for computing approximately the pressure profile 

on the cylinder requires the use of a body contour which joins ‘smoothly’ the 
cylinder surface and the wake-bubble boundary. Thus, the body should not have 
any breaks in its contour since the flow of an inviscid fluid around a sharp corner 
results in either a stagnation point or in an infinite velocity. Furthermore, the 
curvature of the contour must be continuous or else an infinite pressure gradient 
will result at the point of discontinuity (Riegels 1961, p. 70). This contour could 
be chosen in a number of ways. The purpose of this Appendix is to indicate the 
calculational procedure which was employed and to present some of the pressure 
profiles which resulted from the various contours that were selected. 

A typical contour is shown in figure 11, which also serves to illustrate the 
notation used. The contour is represented by the function Y ( X ) ,  where X is the 
distance from the front stagnation point of the cylinder. Both distances are in 
terms of the cylinder radius. The contour is divided into two parts, 

Y = for X < X,,  
I’ = Yz for X > X,, 

where the front part, Yl, is formed by the cylinder surface, so that 

r, = [l-  ( X -  1)2]+. (23) 

The function Yl is joined smoothly to the rest of the contour Y2 at the point X ,  by 
requiring that, as explained above, 

Y, = Yz 

where the primes denote differentiation. The point X ,  is related to the joining 
angle y by X, = 1 -sin y .  (It should be emphasized that the joining angle y is 
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not the angle of separation. It is merely a parameter which is adjusted in such a 
way that the body contour corresponds most closely to the experimentally 
observed wake-bubble boundary.) The various contours were distinguished by 
different choices of the function Y2 as well as by different values of y. 

* 
X 

FIGURE 11. The body contour. 

In  establishing the contours, we were guided by the experimentally observed 
shape of the wake-bubble boundary, but, since this still left a considerable 
amount of latitude, it  was important to establish how much the pressure distribu- 
tion around the cylinder was affected by small changes in the assumed contour. 

,,-7------- 

L n = 0  
Observed, Re== 200 

1 I I - 

- - - -_____-  
FIQURE 12. Comparison of various open body contours with the photographically observed 

wske-bubble boundary. 

The general formula which was adopted was 

Y2 = W - A ( X + B ) - " .  (25) 

For the case n = 0, Y2 = const. Only the first two matching conditions in 
equations (24) can then be met and the value of y was set a t  90'. Such a profile, 
shown in figure 12, has been studied by Riegels (1948, 1961), and the pressure 
distribution around the cylinder as obtained from his results is shown in figure 13. 
(As mentioned in Q 3, the pressure at any point on the cylinder surface was taken 
to be the same as the pressure on the contour at the corresponding value of X.) 
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1 

9 

P 

-1 

-2 

FIGURE 13. The pressure distribution around the cylinder based on 
various open body contours. 

For the cases n = 1 and n = 2, the values of the constants W ,  A and B were 
determined from the matching conditions, equations (24), for a given choice of 
nand y (or X s ) .  Once Y2 was thus defined, the velocity distribution was calculated 
using equation (12). The evaluation of the integral is somewhat laborious but 
leads to  simple closed form expressions which are presented elsewhere (Grove 
1963). 

The contours with y = 45’ are shown in figure 12 for both n = 1 and n = 2. 
It can be seen that both these contours correspond closely to the experimentally 
observed wake bubble boundary. 

Contours and pressure distributions were computed for different values of y 
ranging between 10’ and 60’. It was found that the pressure distributions were 
influenced only slightly by the choice of y, and that all the calculated pressure 
profiles were located between the profile for n = 0 and the profile for n = 1, 
y = 45’, both of which are shown in figure 13. ‘Reasonable’ contours which 
closed a t  various distances downstream of the cylinder were also studied, and the 
resulting pressure distributions were again found to be similar to the ones shown 
on figure 13 (Grove 1963). 

On the basis of a comparative study of these contours, both open and closed, 
one can then conclude that (i) the pressure distribution around the cylinder is 
quite insensitive to the shape of the assumed body contour, and (ii) the more 
closely the assumed contour conforms to the experimentally observed wake- 
bubble boundary, the more closely the calculated pressure distribution agrees 
with the experiments. 
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